With the success of Vision Transformers (ViTs) in computer vision tasks, recent arts try to optimize the performance and complexity of ViTs to enable efficient deployment on mobile devices. Multiple approaches are proposed to accelerate attention mechanism, improve inefficient designs, or incorporate mobile-friendly lightweight convolutions to form hybrid architectures. However, ViT and its variants still have higher latency or considerably more parameters than lightweight CNNs, even true for the years-old MobileNet. In practice, latency and size are both crucial for efficient deployment on resource-constraint hardware. In this work, we investigate a central question, can transformer models run as fast as MobileNet and maintain a similar size? We revisit the design choices of ViTs and propose an improved supernet with low latency and high parameter efficiency. We further introduce a fine-grained joint search strategy that can find efficient architectures by optimizing latency and number of parameters simultaneously. The proposed models, EfficientFormerV2, achieve about $4\%$ higher top-1 accuracy than MobileNetV2 and MobileNetV2$\times1.4$ on ImageNet-1K with similar latency and parameters. We demonstrate that properly designed and optimized vision transformers can achieve high performance with MobileNet-level size and speed.
translated by 谷歌翻译
内存处理(PIM)是一种越来越多地研究的神经形态硬件,承诺能量和吞吐量改进以进行深度学习推断。 PIM利用大量平行,有效的模拟计算在内存内部,绕过传统数字硬件中数据移动的瓶颈。但是,需要额外的量化步骤(即PIM量化),通常由于硬件约束而导致的分辨率有限,才能将模拟计算结果转换为数字域。同时,由于不完善的类似物到数字界面,PIM量化中的非理想效应广泛存在,这进一步损害了推理的准确性。在本文中,我们提出了一种培训量化网络的方法,以合并PIM量化,这对所有PIM系统无处不在。具体而言,我们提出了PIM量化意识培训(PIM-QAT)算法,并通过分析训练动力学以促进训练收敛,从而在向后传播期间引入重新传播技术。我们还提出了两种技术,即批处理归一化(BN)校准和调整精度训练,以抑制实际PIM芯片中涉及的非理想线性和随机热噪声的不利影响。我们的方法在三个主流PIM分解方案上进行了验证,并在原型芯片上进行了物理上的验证。与直接在PIM系统上部署常规训练的量化模型相比,该模型没有考虑到此额外的量化步骤并因此失败,我们的方法提供了重大改进。它还可以在CIFAR10和CIFAR100数据集上使用各种网络深度来获得最受欢迎的网络拓扑结构,在CIFAR10和CIFAR100数据集上,在PIM系统上达到了可比的推理精度。
translated by 谷歌翻译
基于DNN的视频对象检测(VOD)为自动驾驶和视频监视行业提供了重要的重要性和有希望的机会。但是,由于其实用性,可行性和强大的攻击效果,对抗贴片攻击在现场视觉任务中产生了巨大的关注。这项工作提出了Themis,这是一种软件/硬件系统,可防止对抗贴片,以实时稳健的视频对象检测。我们观察到,对抗斑块在具有非稳定预测的小区域中表现出极为局部的表面特征,因此提出了对抗区域检测算法,以消除对抗性效应。Themis还提出了一种系统的设计,以通过消除冗余计算和记忆运输来有效地支持该算法。实验结果表明,提出的方法可以有效地从可忽略的硬件开销中从对抗性攻击中恢复系统。
translated by 谷歌翻译
视觉变压器(VIT)显示了计算机视觉任务的快速进步,在各种基准上取得了令人鼓舞的结果。但是,由于参数和模型设计的数量大量,例如注意机制,基于VIT的模型通常比轻型卷积网络慢。因此,为实时应用程序部署VIT特别具有挑战性,尤其是在资源受限的硬件(例如移动设备)上。最近的努力试图通过网络体系结构搜索或与Mobilenet块的混合设计来降低VIT的计算复杂性,但推理速度仍然不令人满意。这导致了一个重要的问题:变形金刚在获得高性能的同时可以像Mobilenet一样快吗?为了回答这一点,我们首先重新审视基于VIT的模型中使用的网络体系结构和运营商,并确定效率低下的设计。然后,我们引入了一个尺寸一致的纯变压器(无需Mobilenet块)作为设计范式。最后,我们执行以延迟驱动的缩小,以获取一系列称为EfficityFormer的最终模型。广泛的实验表明,在移动设备上的性能和速度方面,有效形式的优势。我们最快的型号,EfficientFormer-L1,在ImagEnet-1k上获得$ 79.2 \%$ $ TOP-1的准确性,仅$ 1.6 $ MS推理潜伏期在iPhone 12上(与Coreml一起编译),该{运行速度与MobileNetV2 $ \ Times Times 1.4 $( $ 1.6 $ MS,$ 74.7 \%$ top-1),我们最大的型号EfficientFormer-L7,获得了$ 83.3 \%$精度,仅$ 7.0 $ MS延迟。我们的工作证明,正确设计的变压器可以在移动设备上达到极低的延迟,同时保持高性能。
translated by 谷歌翻译
During the deployment of deep neural networks (DNNs) on edge devices, many research efforts are devoted to the limited hardware resource. However, little attention is paid to the influence of dynamic power management. As edge devices typically only have a budget of energy with batteries (rather than almost unlimited energy support on servers or workstations), their dynamic power management often changes the execution frequency as in the widely-used dynamic voltage and frequency scaling (DVFS) technique. This leads to highly unstable inference speed performance, especially for computation-intensive DNN models, which can harm user experience and waste hardware resources. We firstly identify this problem and then propose All-in-One, a highly representative pruning framework to work with dynamic power management using DVFS. The framework can use only one set of model weights and soft masks (together with other auxiliary parameters of negligible storage) to represent multiple models of various pruning ratios. By re-configuring the model to the corresponding pruning ratio for a specific execution frequency (and voltage), we are able to achieve stable inference speed, i.e., keeping the difference in speed performance under various execution frequencies as small as possible. Our experiments demonstrate that our method not only achieves high accuracy for multiple models of different pruning ratios, but also reduces their variance of inference latency for various frequencies, with minimal memory consumption of only one model and one soft mask.
translated by 谷歌翻译
最近,稀疏培训已成为有希望的范式,可在边缘设备上有效地深入学习。当前的研究主要致力于通过进一步增加模型稀疏性来降低培训成本。但是,增加的稀疏性并不总是理想的,因为它不可避免地会在极高的稀疏度下引入严重的准确性降解。本文打算探索其他可能的方向,以有效,有效地降低稀疏培训成本,同时保持准确性。为此,我们研究了两种技术,即层冻结和数据筛分。首先,层冻结方法在密集的模型训练和微调方面取得了成功,但在稀疏训练域中从未采用过。然而,稀疏训练的独特特征可能会阻碍层冻结技术的结合。因此,我们分析了在稀疏培训中使用层冻结技术的可行性和潜力,并发现它有可能节省大量培训成本。其次,我们提出了一种用于数据集有效培训的数据筛分方法,该方法通过确保在整个培训过程中仅使用部分数据集来进一步降低培训成本。我们表明,这两种技术都可以很好地整合到稀疏训练算法中,以形成一个通用框架,我们将其配置为SPFDE。我们的广泛实验表明,SPFDE可以显着降低培训成本,同时从三个维度中保留准确性:重量稀疏性,层冻结和数据集筛分。
translated by 谷歌翻译
持续学习的现有工作(CL)的重点是减轻灾难性遗忘,即学习新任务时过去任务的模型绩效恶化。但是,CL系统的训练效率不足,这限制了CL系统在资源有限的方案下的现实应用。在这项工作中,我们提出了一个名为“稀疏持续学习”(SPARCL)的新颖框架,这是第一个利用稀疏性以使边缘设备上具有成本效益的持续学习的研究。 SPARCL通过三个方面的协同作用来实现训练加速度和准确性保护:体重稀疏性,数据效率和梯度稀疏性。具体而言,我们建议在整个CL过程中学习一个稀疏网络,动态数据删除(DDR),以删除信息较少的培训数据和动态梯度掩盖(DGM),以稀疏梯度更新。他们每个人不仅提高了效率,而且进一步减轻了灾难性的遗忘。 SPARCL始终提高现有最新CL方法(SOTA)CL方法的训练效率最多减少了训练失败,而且令人惊讶的是,SOTA的准确性最多最多提高了1.7%。 SPARCL还优于通过将SOTA稀疏训练方法适应CL设置的效率和准确性获得的竞争基线。我们还评估了SPARCL在真实手机上的有效性,进一步表明了我们方法的实际潜力。
translated by 谷歌翻译
障碍物检测是机器人导航中的一个安全问题,即立体声匹配是一种流行的基于视觉的方法。尽管深度神经网络在计算机视觉中显示出令人印象深刻的结果,但以前的大多数障碍物检测都仅利用传统的立体声匹配技术来满足实时反馈的计算限制。本文提出了一种计算高效的方法,该方法利用深度神经网络直接从立体声图像中检测占用率。我们的方法没有从立体声数据中学习点云对应,而是根据体积表示提取紧凑的障碍物分布。此外,我们根据解码器产生的OCTREES以粗到1的方式修剪安全空间的计算。结果,我们在机载计算机上实现实时性能(NVIDIA JETSON TX2)。我们的方法可检测到32米的范围准确的障碍,并以最先进的立体声模型的计算成本的2%的计算成本获得了更好的IOU(相交)和CD(倒角距离)。此外,我们通过使用真实机器人进行自主导航实验来验证方法的鲁棒性和现实世界的可行性。因此,我们的工作有助于缩小机器人感知中基于立体声的系统与计算机视觉中最新的立体声模型之间的差距。为了应对高质量的现实世界立体声数据集的稀缺性,我们收集了一个1.36小时的立体声数据集,该数据集用jackal机器人来微调我们的模型。数据集,代码和更多可视化可在https://lhy.xyz/stereovoxelnet/上获得
translated by 谷歌翻译
深度神经网络(DNN)由于其高度的感知,决策和控制而被广泛用于自主驾驶中。在诸如自动驾驶之类的安全至关重要系统中,实时执行感测和感知等任务对于车辆的安全至关重要,这需要应用程序的执行时间才能预测。但是,在DNN推断中观察到不可忽略的时间变化。当前的DNN推理研究要么忽略时间变化问题,要么依靠调度程序来处理它。当前的工作都没有解释DNN推理时间变化的根本原因。了解DNN推理的时间变化成为自动驾驶实时计划的基本挑战。在这项工作中,我们从六个角度分析了DNN推断的时间变化:数据,I/O,模型,运行时,硬件和端到端感知系统。在理解DNN推断的时间变化方面得出了六个见解。
translated by 谷歌翻译
数据冗余在深神经网络(DNN)的输入和中间结果中无处不在。它为提高DNN性能和效率提供了许多重要的机会,并在大量工作中探索了。这些研究在几年中都在许多场所散布。他们关注的目标范围从图像到视频和文本,以及他们用于检测和利用数据冗余的技术在许多方面也有所不同。尚无对许多努力进行系统的检查和摘要,使研究人员很难对先前的工作,最新技术,差异和共享原则以及尚未探索的领域和方向进行全面看法。本文试图填补空白。它调查了有关该主题的数百篇论文,引入了一种新颖的分类法,以将各种技术纳入一个单一的分类框架,对用于利用数据冗余的主要方法进行了全面描述,以改善数据的多种DNN,并指出一组未来探索的研究机会。
translated by 谷歌翻译